
Computational modeling for honeycomb-stator gas
annular seal

G. Chochua a, W. Shyy a,*, J. Moore b

a Department of Aerospace Engineering, Mechanics and Engineering Science, University of Florida,

231 Aerospace Building, P.O. Box 116250, Gainesville, FL 32611-6250, USA
b Rotordynamics Group, Dresser-Rand Co., Olean, NY 14760, USA

Received 10 May 2001; received in revised form 23 August 2001

Abstract

Gas annular seals are commonly adopted for leakage control in turbomachinery applications. Honeycomb seals are

attractive from the viewpoints of leakage control as well as rotordynamic stability. To improve our understanding of

thermo-fluid-physics in such seals, a computational capability is developed for low Mach number, compressible, tur-

bulent flows. The emphases of the present study include (i) development of an original numerical scheme with periodic

boundary conditions for flows around repeated geometries, (ii) evaluation of a low Reynolds number version of the k–e
turbulence model suitable for the operating conditions of honeycomb seals, and (iii) 3-D computations to assess the

implications of the numerical predictions for practical configurations including velocity, pressure, temperature char-

acteristics and loss mechanisms. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Gas annular seals are commonly adopted for turb-

omachinery applications to reduce leakage, thus im-

proving efficiency. Widely used labyrinth seals combine

good leakage performance and low cost. However, op-

erating at high pressures and tight clearances, they may

develop significant force imbalance to cause rotordy-

namic instabilities. Honeycomb seals were first applied

to improve rotordynamic performance in High Pressure

Oxygen Turbopump (HPOTP) of Space Shuttle main

engine [1] in 1989. A schematic of honeycomb seal be-

tween a stator and smooth rotor geometry is shown in

Fig. 1. Honeycomb seals provide resistance to flow in

axial as well as circumferential directions, and are found

to reduce the tendency of rotordynamic instabilities.

Childs et al. [2] have conducted extensive experimental

investigations for honeycomb seals, and show that the

best sealing and rotordynamic performance for such

seals, with swirling incoming flows and followed by

labyrinth seals, is achieved for seals that longer than

around 50 mm. For shorter seals, say, 25 mm in length,

the rotordynamic stability advantage is diminished [3].

Traditionally, the analytical study of flow in seals is

based on the bulk flow theory of Hirs [4]. This theory is

an extension of a rough pipe flow to accommodate the

annular geometry. However, flows in honeycomb seals

behave quite differently compared to those in rough

pipes. To gain more understanding of the thermo-fluid-

physics, Ha and Childs [5,6] have investigated flows

between two parallel honeycomb plates. They demon-

strate that the friction factor is sensitive to changes in

cell geometry, making it necessary to adjust empirical

coefficients of the theories for the individual honeycomb

geometry. Needless to say, such case-by-case adjustment

precludes the development of any predictive capabilities.

In addition, experimental studies also show a strong

dependence of the friction factor from the Reynolds

number in certain situations, including dramatic drop

and rise of the friction factor [7]. Full Navier–Stokes

solutions for such flow problems are challenging due to

the complex geometry and physics involved. Hendricks

et al. [8] have reported their computational work for

flows between two flat honeycomb plates, based on the

case studies carried out experimentally by Ha and Childs
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[5]. However, little quantitative information is provided

to allow detailed evaluation of their efforts. In the pre-

sent study, we develop and refine computational tech-

niques from both numerical and modeling viewpoints,

with the goal of evaluating computational fluid dy-

namics (CFD) capabilities with the aid of experimental

information. Specifically, the emphases of the present

study include (i) development of an original numerical

scheme with periodic boundary conditions for com-

pressible, turbulent flows around geometries with re-

peated patterns, (ii) evaluation of a low Reynolds

number version of the k–e turbulence model suitable for

the operating conditions of honeycomb seals, and (iii)

detailed 3-D computations to assess the implications of

the numerical predictions for practical configurations. In

the following, we will first present the governing equa-

tions, followed by the development and assessment of

the numerical and modeling issues, and then present

several case studies based on the experiments with direct

relevancy to honeycomb seal applications.

2. Numerical techniques

3-D compressible Navier–Stokes equations are

solved in body-fitted coordinates, based on the finite

volume formulation. Second-order schemes are adopted,

with the upwind arrangement for convection, and cen-

Nomenclature

A area

Aw area of the effective plate surfaces

Cl, Ce1, Ce2 turbulence closure coefficients

D;E near wall damping functions, used in

low Re turbulence models

H stagnation enthalpy per unit mass

L length

M Mach number

PrL laminar Prandtl number

Prt turbulent Prandtl number

R gas constant

RT turbulent Reynolds number

Re Reynolds number

T temperature

Ti turbulent intensity

Tt total temperature

U mean (bulk) flow velocity

X ; Y ; Z coordinates

f friction factor

fp pressure component of the friction

factor

fs shear stress component of the friction

factor

d seal diameter

he enthalpy per unit mass

h clearance

k kinetic energy of turbulence per unit

mass

l turbulent length scale

_mm mass flow rate

n3 direction cosine between a surface

normal and Z direction

p pressure

t turbulent time scale

t3 direction cosine between wall shear

stress vector and Z direction

u Cartesian velocity component

x Cartesian coordinate

y distance from the wall

yþ non-dimensional distance from the wall

in turbulent flows

ŷy distance from the wall normalized by

clearance

Greek symbols

b mesh stretching parameter

d boundary layer thickness

dij Dirac delta function

e turbulent kinetic energy dissipation rate

êe effective turbulent kinetic energy

dissipation rate

l molecular viscosity

lt eddy viscosity

m kinematic viscosity (¼ l=q)
q density

rk , re turbulence closure coefficients

swall wall shear stress

Subscripts

i; j; k; l cyclical indices or indices along x; y; z
direction

i index of structured grid

in denotes inlet

mid denotes middle of computational

domain in flow direction

Superscripts
0 denotes fluctuation in turbulent flow,

conventionally averaged variables
00 denotes fluctuation in turbulent flow,

mass-averaged variables

Overbars

– denotes conventionally averaged

quantity

� denotes mass-averaged variables
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tral difference for other terms [9,10]. The solution pro-

cedure employs a unified pressure-based algorithm

[10,11] in structured multiblock grid [12]. The turbulence

closure is modeled using the k–e model [13] accounting

for the low Reynolds number effect, proposed by Chien

[14].

2.1. Governing equations

The Favre-averaged Navier–Stokes equations [11]

for compressible, turbulent flows are adopted in the

present study. The individual equations are presented

below.

Continuity equation:
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Equation of state:

p ¼ qR ~TT : ð4Þ

The Reynolds stresses are approximated using the

Boussinesq eddy viscosity approximation. The govern-

ing equations are discretized and flux constructed em-

ploying the body-fitted curvilinear coordinates.

2.2. Turbulence model

The original k–e turbulence model [13] with low

Reynolds number modifications, proposed by Chien

[14], is applied to represent the Reynolds stresses
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The turbulent time and length scales are provided by

turbulent kinetic energy, k, and effective eddy dissipa-

tion rate, êe

lt ¼ q
l2

t
¼ qCl

k2

êe
: ð6Þ

The two transport equations have the following

forms:
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o

oxi
l

�"
þ lt

re

�
oêe
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k

� Ce2q
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The effective rate of dissipation is determined to be

êe ¼ e � D, where D is added to the original model based

on the low Reynolds number modifications, and the

turbulent Reynolds number is defined as RT ¼ k2=mêe.
There are five empirical coefficients, which need be de-

termined in the original k–e two-equation model,

Table 1

Coefficients adopted by the original and a low Reynolds number k–e turbulence models

Model Cl Ce1 Ce2 rk re D E

Original [13] 0.09 1.44 1.92 1.0 1.3 0 0

Low Re [14] 0:09ð1� e�0:0115yþ Þ 1.35 1:8ð1� :22e�ðRT=6Þ2 Þ 1.0 1.3 2mk=y2 �2mð~ee= y2Þe�0:5yþ

Fig. 1. Schematic honeycomb seal geometry, adopted from Ha

and Childs [5].
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namely, the turbulent Prandtl numbers for k and e (rk

and re), the two coefficients regulating the magnitude of

the production and dissipation in the e equation (Ce1 and

Ce2), and coefficient regulating the magnitude of the

eddy viscosity (Cl). Owing to the presence of the solid

wall, the wall function treatment, as proposed in the

original k–e turbulence model, is frequently adopted in

practice.

The wall function approach is based on the notion of

equilibrium between production and dissipation of the

turbulent kinetic energy. This scenario is valid for flows

Fig. 2.The two mesh systems employed for evaluating the wall function and low Reynolds number treatments. The upper mesh is

uniform in the transverse direction, and the lower mesh is non-uniform with the nearest wall cell assuming h=dy1 ¼ 100, where dy1 is
height of the first cell adjacent to the wall.

Fig. 3. Comparison of predicted and measured friction factor

vs. Reynolds number for the channel flow. The yþ values shown

in the figure corresponds to the first grid point next to the solid

wall (at distance dy1 from the wall). Both wall function and low

Reynolds number treatments along with two different near wall

mesh distributions have been presented along with the experi-

ment of Ha and Childs [5].

Fig. 4. Friction factor in full length and periodic seal geometry.

Excellent agreement is observed between the two solutions.
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with no significant streamline curvatures and when

yþ � 1. If these conditions are not satisfied, a low

Reynolds number modification, which resolves turbu-

lence directly to the wall using additional damping

functions D and E presented above, can be useful. The

expressions for these modeling parameters are summa-

rized in Table 1.

2.3. Assessment of the low Reynolds number model

Computations of 2-D low Reynolds number channel

flows are performed to study the relative accuracy of the

near-wall treatments between the wall function and low

Reynolds number model. The experimental guidance is

available from the test case 2 of the experimental study

of Ha and Childs [5]. In their study, measurements have

been made for flows between two flat plates with an inlet

pressure of 12.4 bar, clearance of h ¼ 0:38 mm, and

length of L ¼ 76 mm, making an aspect ratio of

L=h ¼ 200. The Reynolds number, defined based on

double channel height and averaged mass flux,

Re ¼ qUð2hÞ=l, assumes the range of 8090–68,330. In

Fig. 5. Mass flux (qu), turbulent kinetic energy ðk=~uu2Þ and eddy viscosity ðeh=~uu3Þ profiles at the inlet of the full channel and middle of

the full channel (where the flow is fully developed), and inlet values computed based on the periodic condition with 1% of the full

geometry length. Excellent agreement between full and periodic treatments has been obtained.

Table 2

Full geometry and axially periodic boundary conditions

Full geometry BC Periodic BC

pi¼1 ¼ 1:5pi¼2 � 0:5pi¼1 pi¼1 ¼ pi¼2 þ 0:5ðpi¼mid

� pi¼ðmidþ1ÞÞ

�qq ¼ p

R~TT
�qq ¼ p

R~TT

~TT ¼ Tt
1þ c�1

2
M2


 � ~TT ¼ Tt
1þ c�1

2
M2


 �
~uuin ¼

_mmgiven

�qqin

P
Ain

~uuin ¼ ~uumid

_mmgivenP
�qqin~uumidAin

� �

k ¼ 3

2
ðUinTiÞ2 kin ¼ kmid

uin
umid

� �2

e ¼ C3=4
l

k3=2

l
; l ¼ 0:07h ein ¼ emid

uin
umid

� �3

lt ¼ qCl
k2

e

lt;in ¼ lt;mid

G. Chochua et al. / International Journal of Heat and Mass Transfer 45 (2002) 1849–1863 1853



the present computations, the domain is discretized by

201	 21 nodes. The mesh is uniform along the channel

length, while both uniform and non-uniform meshes in

the transverse direction are considered. For non-uni-

form mesh, a grid-clustering law is chosen from the

family of general stretching transformation discussed in

[15]

y ¼ h
b þ 1ð Þ b þ 1ð Þ= b � 1ð Þ½ � 2ŷy�1ð Þ � b þ 1

2 1þ b þ 1ð Þ= b � 1ð Þ½ � 2ŷy�1ð Þn o ; ð9Þ

where ŷy ¼ y=h is the non-dimensional distance from

the wall of the channel for uniformly distributed grid.

The stretching parameter b is related (approximately)

to the non-dimensional boundary-layer thickness d=h
by

b ¼ 1

�
� d
h

��1=2

; 0 <
d
h
< 1: ð10Þ

Grid clustering corresponding to b ¼ 1:044
(h=dy1 ¼ 100, where dy1 is height of the first cell adjacent
to the wall), along with a uniform mesh (h=dy1 ¼ 20) are

shown in Fig. 2. Numerical solutions, with both wall

functions and low Reynolds number treatments, and

comparisons with the experiments are shown in Fig. 3.

The results with near wall refinement show that there are

significant deficiencies for the original k–e model with

the wall function treatment for such low Reynolds

Fig. 6. Geometries of the seal with two honeycomb plates. Dimensions correspond to the test case 17 of Ha and Childs [5]. The test

case 20 differs only by cell depth being 3.81 mm, in comparison with 3.05 mm in the test case 17.
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number flows, because the yþ value of the first grid point

next to the solid surface becomes low and the equilib-

rium assumption is not valid. Uniformly distributed grid

gives accurate solution only when the Reynolds number

is higher then 23,000, when yþ of the nearest wall node is

more than 16. On the other hand, the low Reynolds

number model with the same grid size yields reasonable

solutions for the entire range of the Reynolds numbers

tested. However, it is also found that the low Reynolds

number model becomes computationally stiff when the

overall Reynolds number becomes high. In these cases,

the originally k–e computations are conducted in the

early stage of the solution procedure, with the low

Reynolds number model invoked after the computation

is close to reach a reasonable approximation of the flow

field. It is clear from this assessment that the low Rey-

nolds number model adopted is effective in treating the

flow conditions typically encountered in honeycomb

seals.

2.4. Periodic treatments for geometry with repeated

patterns

For flows in long channel in a configuration with

repeated geometric patterns, such as that of a honey-

comb seal, it is of much interest to develop a strategy to

shorten the computational domain so that more reso-

lution can be made available to improve the numerical

accuracy, and less computing time is required for ob-

taining a numerical solution. For example, for the pre-

sent channel flow discussed, the friction factor varies

when the flow structure evolves within a developing

length. When the flow profile is fully developed, features

such as the friction factor become unchanged. Fig. 4

shows this feature along the channel, with an aspect

ratio of 200, Re ¼ 38; 100 and M ¼ 0:177. To gain in-

sight into the performance of a periodic treatment, a

computational domain with an aspect ratio 2, or 1% of

the full geometry length studied previously, is adopted

for comparative evaluations. Computations for the flow

in the present case, with the full channel geometry, show

that the solution does not reach the fully developed

condition until after passing through 30–40% of the

channel length. The periodic treatment is valid only

when the flow has reached a fully developed condition.

For the honeycomb seals, due to geometric configura-

tions, the flow repeats its pattern after passing through

sufficient number of cells. So, even though the flow will

not be fully developed, the repeatability of the flow filed

warrants the adoption of the periodic treatment also.

The main contributions of this work in this regard are to

account for both compressibility and turbulence effects

Fig. 7. The mesh system generated for the honeycomb geometry for test case 20 in the experiment of Ha and Childs [5]. In this il-

lustration, a total of 288,192 grid points with five grid blocks are employed.
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along with the velocity and pressure computations. In

the following, we summarize the original development of

periodic treatments for compressible, turbulent flows in

geometries with repeated patterns. In the present meth-

od, the value of each dependent variable at the inlet is

assigned based on that of the same variable in the middle

location of the streamwise direction (subscript mid) of

the periodic domain. In other words, the present treat-

ment considers two periodic geometric elements, and

chooses the midpoint value to eliminate the influence of

the numerical outlet treatment. The values known a

priori in both full and periodic geometries are the mass

flow rate, _mm, and the total inlet temperature, Tt. Of

course, for an adiabatic wall condition, which is the case

in the present study, the total temperature remains un-

changed in the entire flow domain.

Fig. 8. Streamline plots, in the symmetry plane of the honeycomb cell, for the test case 17 of Ha and Childs [5]. Cell width¼ 0.79 mm,

cell depth¼ 3.05 mm, clearance¼ 0.38 mm. Inlet pressure is 6.9 bar.
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Specific formulas proposed for the periodic

boundary conditions for the compressible, turbulent

flow are shown in Table 2. The inlet pressure for the

standard BC with no periodic consideration is extrap-

olated from the two near-inlet points. For the periodic

inlet, the near-inlet values are extrapolated from the

near-inlet value using pressure gradient developed at

the middle of the domain, along the streamwise di-

Fig. 9. Streamline plots, in the symmetry plane of the honeycomb cell, for the test case 20 of Ha and Childs [5]. Cell width¼ 0.79 mm,

cell depth¼ 3.05 mm, clearance¼ 0.38 mm. Inlet pressure is 6.9 bar.
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rection. Density in both full and periodic geometries is

obtained from the equation of state, and the inlet

temperature is calculated from the total temperature

and the local Mach number. Inlet velocities in the full

geometry treatment are found based on the given mass

flow rate and local density. In the periodic treatment,

the velocity profile from the middle of the domain is

adopted in the inlet with a scaling procedure. The

scaling procedure is to account for the fact that the

temperature and pressure, and hence the density values

at the inlet and the midpoint are different. To ensure

that the mass conservation is satisfied, a simple linear

scaling is devised. This aspect makes the current

treatment different from those periodic treatments for

incompressible, constant property flows. Furthermore,

the inlet turbulence quantities for the periodic treat-

ment also need to be scaled based on the dimensional

laws of the individual variables [16], as shown in

Table 2. Specifically, in the present periodic treatment,

the inlet k and e profiles are copied from the corre-

sponding variables in the middle of the domain, and

scaled based on the absolute velocity ratio in power 2

and 3, respectively.

Fig. 5 demonstrates the validity of the proposed pe-

riodic treatment by plotting mass flux and non-dimen-

sionalized turbulence kinetic energy and eddy

dissipation rate. As the flow in the channel becomes fully

developed, the profiles of these variables become un-

changed and serve as the basis for periodic boundary

conditions.

3. Results and discussions

3.1. Experimental setup of the honeycomb seals

In addition to the smooth geometries, Ha and Childs

[5] have experimentally studied flows between two

Fig. 10. Representative pressure contours on the cell walls, fp ¼ 0:077. Cell depth 3.05 mm, Re ¼ 6302. For related information, see

Fig. 8.
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honeycomb plates, placed against each other with a

small gap between them. Fig. 6 shows the geometrical

characteristics of the test case 17. The test case 20 differs

only in the cell depth, which is 3.81 mm, in comparison

of 3.05 mm in the test case 17. In both cases, the clear-

ance between the two honeycomb plates is 0.38 mm, the

inlet pressure is 6.9 bar. The Reynolds number ranges

from 6067 to 24,130 and the Mach number range is

0.045–0.235. The friction factor measured by them var-

ies from 0.03185 to 0.13594 and is significantly higher in

their test case 17.

Reynolds and Mach numbers affect the thermo-fluid-

dynamics parameters. In the present study, the effect of

Mach number is largely reflected in the variations in

pressure, temperature and density profiles. Conse-

quently, the Mach number affects the detailed periodic

treatment. Its impact on parameters such as the loss

mechanisms is insignificant for low subsonic flows, as is

the case here. The experimental studies [5] show that the

measured losses for various honeycomb geometries are

not only sensitive to small changes in geometric varia-

tions, but in general do not correlate well with the

Reynolds number. Noticeably, the so-called friction-

factor-jump phenomenon is observed, which results

from the unsteady interaction between forced acoustic

response of the flow around cells and the amplification

of feedback disturbances of the mainstream flow. Such a

behavior is similar to that observed in flows over a cavity

[17,18] involving strong acoustic radiation. In the pre-

sent study, we will not address issues related to friction-

factor-jumps, and focus on the steady-state formulation

to gain insight into the fundamental physics and num-

erics associated with such geometries and operating

parameters.

Fig. 11. Contours of near-wall shear stress absolute values at the cell walls, fs ¼ 0:005. Cell depth 3.05 mm, Re ¼ 6302. For related

information, see Fig. 8.
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3.2. Computational results

As already established, the operational conditions of

the honeycomb seals require a low Reynolds number

turbulence model. In order to employ such a model, a

dense mesh is needed in the wall region in order to ob-

tain near-wall yþ < 5. A representative view of the mesh

system generated is offered in Fig. 7. Only half of the

domain is considered in the direction of the clearance,

modeled by the symmetry boundary condition. Since

there is no transverse wall motion, symmetry boundary

conditions are used in the transverse ðX Þ direction,

shown as sides 2 and 4 in the figure. Periodic inlet and

outlet conditions developed in this work are considered

in the streamwise direction ðZÞ. It should be emphasized

that the honeycomb walls have finite thickness, which is

accounted for in order to provide desirable level of nu-

merical fidelity.

Figs. 8 and 9 depict streamlines in the symmetry

plane with the honeycomb cells shown in Fig. 7, for test

cases 17 and 20, respectively. In each figure, results with

different Reynolds numbers are depicted. In general, one

observes two contra-rotating vortices in each cell. The

higher the Reynolds number, the more volume the pri-

mary vortex occupies. After certain Reynolds numbers,

the primary cell reaches the bottom of the cell, and

further increasing Re does not affect the qualitative flow
pattern.

3.3. Loss mechanisms

When analyzing the total friction factor, one simply

performs integration to obtain the total pressure at the

inlet and outlet, and computes the loss based on the

difference between them, i.e.,

f ¼
R
inlet

ð�ptÞn3 dA�
R
outlet

ð�ptÞn3 dA
0:5qU 2Aw

; ð11Þ

where A cross-sectional area of the inlet/outlet, Aw is the

effective area of the plate surfaces, 0:5qU 2 is the aver-

aged dynamic pressure, and n3 is direction cosine be-

tween the inlet/outlet normal and the flow ðZÞ direction.
Of course, there are different physical mechanisms re-

sponsible for the loss, one being the shear stress at the

solid wall, the other being the pressure-induced loss due

to the change in the effective geometry of the honey-

comb seal, due to the viscous effect. The pressure-in-

duced loss results from the mixing process between fluid

particles inside the cell. In order to gain insight into the

relative contributions between wall shear stress and

pressure-induced loss, we plot pressure and wall shear

Fig. 12. Pressure contours in Y –Z plane through the plane of

symmetry. Flow is from left to right. Cell depth 3.05 mm,

Re ¼ 6302. For related information, see Fig. 8.

Fig. 13. Wall shear stress syz=0:5qU 2 contours in Y –Z plane

through the plane of symmetry. Flow is from left to right. Cell

depth 3.05 mm, Re ¼ 6302. For related information, see Fig. 8.
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stress contours, respectively, on the honeycomb walls in

Figs. 10 and 11. Integration in the flow direction ðZÞ
yields

fp ¼
R
walls

ð�pÞn3 dA
0:5qU 2Aw

¼ 0:077; ð12Þ

fs ¼
R
walls

swallt3 dA
0:5qU 2Aw

¼ 0:005; ð13Þ

where swall is wall shear stress at honeycomb walls and t3
is directional cosine between wall shear stress vector and

flow ðZÞ direction. Hence the pressure drag is 15.4 times

6.54

6.55

Z

X

P
,b

ar

Fig. 14. Typical pressure plot at the middle plane between two honeycomb plates. Flow is in positive Z direction. Periodic domain with

four cells is shown twice, using advantage of sidewise symmetry. For related information, see Fig. 8.

Fig. 15. Temperature contours in Y –Z plane through the plane of symmetry. Flow is from left to right. Cell depth 3.05 mm, Re ¼ 6302.

For related information, see Fig. 8.
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higher than friction drag in the honeycomb seal. This

observation can help explain why honeycomb seals can

better control the leakage in comparison to smooth

seals. The pressure drag production mechanism can be

seen in Figs. 12 and 13. Strong recirculation at the neck

of the cell produces shear stress gradients, which is

balanced in part by the pressure gradients.

Fig. 14 shows pressure plots resulted at the middle

plane between the plates. It presents characteristic steps

in which pressure decreasing from an upstream cell to a

downstream cell. High mesh density, required by low

Reynolds number models, is helpful in capturing sharp

gradients between cells.

Fig. 15 shows temperature contours associated with

the flow field around the honeycomb cells. The Mach

number for the case shown is low, 0.049. The temperature

gradually increases in the clearance direction from the

centerline to the cell bottom. For higher Mach number

flows in the range considered, the temperature level in-

creases faster with similar qualitative characteristics.

4. Conclusions

Steady-state numerical computations employing a

low Reynolds number turbulence model are compared

with experimental results for flow between two straight

honeycomb plates. Periodic boundary conditions for

compressible, turbulent flow with pressure gradient are

developed allowing computational consideration of

smaller portion of the physical domain with improved

resolution. Even though the Mach number is low, the

compressibility effect influences the development of the

thermal variables, and hence the periodic boundary

conditions. Turbulence modeling has a strong effect on

the present flow regime. In the context of the k–e two-

equation model, it is shown that the low Reynolds

number model performs better than the wall function

treatment.

The computations show that as Re is increased, the

primary vortex penetrates deeper toward the bottom of

the honeycomb cell. On the other hand, the friction-

factor-jump phenomenon is observed experimentally but

not by steady-state computations. For honeycomb seals,

the pressure drag (form drag) dominates the wall shear

stress. Strong pressure gradients in vicinity of the

downstream walls are balanced by enhanced shear

stresses from the mixing process. This observation helps

explain why honeycomb seals can better control flow

leakage compared to the smooth wall seals.
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